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The continuous optical discharge consists of a steady discharge sustained by a focussed continuous laser
beam with a preconduction power level, Experimental investigations of the continuous optical discharge, fol-
lowing its discovery {1], showed that under certain conditions steady-state "burning" of the discharge does not
occur: either the discharge ceases or there are periodic oscillations of the leading edge of the plasma at a
frequency of the order of 10-15 Hz, which are obviously accompanied by the propagation of abserption fronts
which follow one another from the ignition point in the opposite direction to the beam. These phenomena, which
can be ireated as the manifestation of instabilily of the corresponding steady-state modes of the discharge, as
though it were a static discharge or a discharge wave propagating with constant velocity, are observed in the
upper pressure limit at which a continuous optical discharge can exist [2].

In view of this and a number of other phenomena it is of interest to investigate the siability of the dif-
ferent steady-state modes of an optical discharge. The problem of the stability of any particular mode of the
discharge generally arises immediately after the corresponding stationary solution is constructed. In the con-
struction of these solutions the idea of an analogy between a burning wave — a flame front — and the discharge
wave [3] and the stationary heating on the surface of a spherical volume of gas and the continuous optical dis-
charge in a focussed beam [4] has been extremely fruitful, and has enabled the highly developed methods of
the theory of combustion to be used in the physics of the discharges. If might be expected that methods of in-
vestigating the stability of flames would also be fruitful when solving the problem of the stability of different
types of discharges.* Inparticular, the methods used in the present paper go back to {5] in which the diffusion-
thermal instability of chemical-transformation fronts is investigated.

A number of gqualitative effects which should affect the stability of the discharge are mentioned in {3], In
[4] a proof is given of the one-dimensional stability of a steady optical discharge of spherical shape. An at-
tempt to analyze the stability of a continuous optical discharge to one-dimensional perturbations was also made
in [6, 71, but the results obtained, in particular the conclusions regarding the existence of a limit of the stabie
continuous optical discharge at a fairiy high temperature of the sur.ounding medium, are of doubtful validity
due to the inconsistent use of the method of small perturbations.

Below, we investigate the probiem of the linear stability of a one-dimensional wave of an optical dis-
charge propagating towards the laser beam. A one-dimensional model of the stationary wave of the discharge
is assumed [3], which is applicable when there is a small change in the light flux during the time the wave
takes to travel a distance of the order of its width and assuming that the flow of gas in the channel of the light
beam is one-dimensional.

We will consider the case of Mintense® absorption of the electromagnetic energy flux, when the absorption
length of the radiation is much less than the radius of the channel. If conditions are established in which the
energy losses due to radiation and due to heat transfer through the houndary of the channel are small com-
pared with the heat dissipation, the probiem arises of the propagation of a wave of the optical discharge with-
out loss [3]. The stationary characteristics of such a wave were obtained in [8]. We will now analyze its stabil-
ity.

1. We will choose a system of coordinates attached to the propagating unperturbed wave in which the gas
moves in the positive x direction (see Fig. 1). In view of the sharp Boitzmann dependence of the absorption
coefficient on the temperature [3] the extent of the zone of heat digsipation in which the incident flux of electro-
magnetic energy of power 8, is completely absorbed is small compared with the width of the heating zone. We

*Thege methods enable one to obtain an effective solution to the problem of the stability of high-frequency dis-
charges under conditions of intense skin effect [V. L. Myshenkov, Zh. Eksp. Teor. Fiz., 73, No. 5, 1794 (1977)].
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will regard it as a surface which separates region 1, in which S = 8;, from the region of hot gas 2 with S = 0,
which is completely screened by the absorption zone (values relating to each of these regions will henceforth
be denoted by the subscripts 1 and 2, respectively).

The thermal instability will first be analyzed ignoring the influence of hydrodynamics on the discharge
front and assuming constant gas density, which considerably simplifies the investigation, since in this case
we do not need to consider the perturbed motion of the gas, In the following section we will show that these
assumptions do not alter the results obtained regarding the stability of the discharge wave to one-dimensional
perturbations.

The stationary temperature distribution in the discharge wave oufside the absorption zone
TY(x) = T+ (Ts— To)exp 2/} (I = Wlpguetp)y T =Ty 1.1

satisfies the same heat conduction equation ZTg" = Tg’ (i =1, 2, and the prime denotes differentiation with re~
spect to x) and the boundary conditions T} ) = Ty, TY(0) = Tzo(()) = TR, TS' {») =0, Here T, is the initial tem-
perature of the gas, Ty is the temperature in the absorption zone, and A and ¢p are the thermal conductivity
and specific heat at constant pressure, which are assumed to be constant, and the superscript zero here and
below denotes stationary quantities. The stationary wave velocity u, and Ty are found from the following rela-
tions which express the law of conservation of energy and energy balance in the absorption zone:

“+o0
So= | Sp(Dyda, 1y =5, 1.2)

where p is the radiant-energy absorption coefficient.

Using the method of small perturbations, we will specify the perturbation of the surface of the absorption
front in the form

E = £ eX] wi (1.3)

(e is a constant, w is the increment, and t is the time) and we will seek the perturbed temperature fields sat~
isfying the nonstationary heat-conduction equations

ar, &1, ar,
Pocr g7~ = A — Pl 1.4)
in the form
Tz"—“TS(x)—f‘aTz(xi £, 6T5:fi(a:)exp(ot. (1.5)

Substituting {1.5) into the linearized equations (1.4) and solving these for f; taking into account the decay
of the perturbations as x — —» and their boundedness as x — +=, we obtain

hi=Crexp (I + V1 -+ 4Q)/2L, §, = Cy exp (1 — V1 -+ 4Q)z/21

e 1.
Q = olluy, Be V1-+4Q > 0). (1.6)

The perturbed solutions on the left and right of the absorption front are related to one another by the
conditions of continuity of temperature T&) and conservation of energy fiux:

$o=0, TYE+8T, =0Ty, TY¢ 4 (8T, = (8T,). 1.7
These boundary conditions can be found by integrating the nonstationary heaf-conduction equation
ar ar . T
Polp 57— T Polbelp —5— = A ot +ps 1.8)



with the added term uS representing the heat dissipation due to absorption of the electromagnetic energy flux
in the absorption zone, allowing its thickness to approach zero, and linearizing the relations cbtained taking
into account the fact that { and 6T are quantities of the first order of smallness, In deriving the second bound-
ary condition in (1.7) allowance must be made for the fact that the source term in (1.8) is equal to —S' in view
of the equation of light-flux absorption St =—uS§,

In the linear approximation the change in the velocity of propagation of the stationary discharge wave,
which can be assumed to depend only on the temperature in the absorption zone, is represented by the coeffi-
cient

2= (T, — To¥d In u/dT,, 1.9
the explicit expression for which is determined by the specific form of the uy(Tg) relationship [for u, ~ exp

(—I/2kTB) we have z = I{(Tg— Ty /2kT2B]. Then the linearized condition for total absorption of the light flux
in the wave front (taking into account the smallness of £) can be written in the form

& o
=1 T T, 0T, (0). (}.10}

Substituting (1.3) and the solutions (1.5) and (1.6) into Egs. (1.7) and (1.10) we obtain a system of three
linear equations for €, Cy and C,, which has a solution provided

20T +4Q + (Vi+4Q — 1) = 0. (1.11)

It can be shown that this equation does not have unstable roots with Re& > 0, i.e., the optical~discharge
wave is stable for all z. The root @ = 0 of Eq. (1.11) represents perturbations which occur when the initial
stationary temperature perturbation is displaced in the x direction without changing its shape. The existence
of such perturbations follows from the invariance of the heat-conduction equation employed with respect to a
displacement along the x axis. In [9], which is devoted to an analysis of the one-dimensional stability of a
laminar flame, it was shown that the presence of such a "translational™ perturbation does not indicate that
the stationary solution is unstable,

The above investigation is broadly similar to the analysis of the stability of the front of an exothermal
chemical reaction propagating in a condensed medium [10]. The difference, due to the specific features of the
system considered, lies solely in the second boundary condition in (1.7).

2. We will carry out a more accurate analysis of the stability taking into account the dependence of the
gas density on temperature. The gas is assumed to be dynamically incompressible, since the rate of propaga-
tion of the wave is much less than the velocity of sound (the Mach number is much less than unity). The pres-
sure drop in the wave front is small (of the order of the square of the Mach number), and the pressure can be
assumed to be constant, The gas density is then found from the known temperature distribution (1.1) using the
equation of state

pT = const = p Ty, i.e. 03 =pTo/TY, 3= peTo/Ts @.1)
(the superscript zero denotes quantities at x = — ),
The stationary velocity of the gas is found from the equation of continuity
p0ul = const = Py, Ul = Pylte/pY,  UD = Polto/Ps = U Ts/ Ty 2.2)

When analyzing the stability one must bear in mind the fact that the temperature perturbation, according
to the equation of state (2.1), leads to a perturbation of the density 6p; = —(pyTy/ Ty )6T (6p; = pj — pf). Hence,
the linearized heat-conduction and continuity equations take the form

8T, a7 arg 8T,
picy 57— T PotCyr —g— T Cp dxi 8 (pu)i = A PR
T, 88T, 2.3)
—Dolo BT 2 S(ou)i =0 (8 (pw) = pu — poko)-
79 v
Substituting (1.5) and 8 (pu); = pyugp; (x) exp wt we obtain
T ’ ’ 7
Tg Qf; + 1fs — 1T% @i = I35 2.4)
i
T 14
— T:2 Qfl -+ l(p,, = 0. (2‘5)

i
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We will obtain the solution of this system of equations in the region x < £(i = 1). Multiplying Eq. (2.5) by
T) and adding it to (2.4) we obtain the integral of the system

P = (Zfi - f1)/T2 (2.6)
{the constant of integration is zero since f; = 0, f'l =0, ¢; =0 when x = —=),

Substituting ¢, from Eq. (2.6) into Eq. (2.5) we obtain a second-order linear differential equation in f;
with variable coefficients

fi g @ fib ay @) fy =0, = e, = et @.7)

which must satisfy the boundary condition f; (%) = 0.

It is not possible to integrate Eq. (2.7). However, we can use the fact that to analyze the stability it is
sufficient to construct a solution of Eq. (2.7) with the condition f; %) = 0 in the neighborhood of the point x = 0
with an accuracy to O ().

We will proceed as follows. We obtain the general solution (2.7) assuming a, and &, to be constant:
fr=Cuy + Cuyar ¥i = expBi (@),

2 1 2.8)
Bi,e = —;—ali V—;t—a;—az, Re ]/Tai——a2>0

(C and 61 are constants).

If we now take into account the fact that the coefficients a, and 4, depend on x, Eq. (2.8) becomes an ap-
proximate solution which coincides with the true solution as x ——=, since Eq. (2.8) is the solution of Eq. 2.7)
with the coefficients a;¢-«) and @y =), In view of the boundary condition f;& =) = 0 we must put C; = 0,

In the region x — =« the function {; = C,y; with 8,&) = 3;(0) describes the solution of the initial equation
(2.7) very accurately [the error which occurs on substituting the approximate solution y; into Eq. (2.7) does not
exceed a quantity of the order 81(0) =~V T,/Tg < 1 of the value of the main term] and, in the required approxi-

mation, has the form
, , 1 T T .
fooe CL (LB (0)2), Br(0) =11 2T0B ‘ ZTOB ) 1+4 TBOQJ' 29

At other points the approximate solution (2.8) may differ considerably from the true solution, but for our
purposes it is only important that it should be valid for small and large values of Ix |,

In the region x > ¢ the solution for f, can immediately be found from Eq. 2.4) since T§' =0, Taking into
account the fact that the perturbations are bounded at x = + = it has the form

’ —'——T—
o= Coop 1 - ‘/1+47§9‘ 2121, 2.10)

Substituting the solutions (2.9), (2.10) and (1.3) into the boundary conditions on the discharge front (1.7)
and, taking into account the temperature dependence of the density, the aitered condition for total absorption
of the light flux in the wave front

at uy f Ty
R TB—TO)"’“(O)”

we obtain the following condition for the system of three linear equations in C;, C, and ¢ to have a solution;

(2.11)

2 i) =o

T, T T, C(Te=Ty N\ Ty
o[/ T By T« (B T

This equation does not have unstable roots with Re{l > 0 (as mentioned above the root & = 0 is not un-
stable), i.e., the conclusion in Sec. 1 regarding the stability of the discharge wave obtained when analyzing
the perturbations of only the temperature field is confirmed. The stability is not disturbed if allowance is
made for the fact that the gas expands due to it being heated by the heat dissipated in the absorption zone.
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From Egs. {2.6) and (2.5) for i = 2 we can obtain the perturbations of the mass flow of gas in regions 1
and 2, which are connected to one another by the condition of continuity of the mass flow through the wave froat.
The corresponding equation contains the constants C and C; and cne new constant equal to the perturbation of
the gas velocity behind the wave front when x = s, It is not used o obtain the characteristic equation {2.11) and
is therefore not given here,

3. One-dimensional perturbations of the discharge-wave front are the most dangerous from the point of
view of the occurrence of instability. In fact, when the surface of the absorption front is distorted, correspond-
ing to spatial (non-one-dimensional) perturbations, the parts of the front that are convex in the direction of
propagation of the wave dissipate heat more than the plane parts of the front. Hence, the velocity of propaga~
tion of the discharge front, which depend strongly on the temperature, are less stationary on the convex parts,
On the concave parts the gas temperature on the other hand, is greater than on the convex parts, since the
gas is heated additionally from the neighboring convex parts. The velocity of propagation of the concave parts
is correspondingly greater than the stationary part. On the whole, as a result of the increase in the velocity
on the concave parts and the reduction in the velocity on the convex parts the discharge front becomes equal-
ized. Hence, when the front is distorted, additional stabilization of the discharge wave occurs. A mathematical
investigation of the stability of the discharge front with respect to spatial perturbations can be carried out with~
in the framework of the model investigated in Sec, 1. In this case perturbation of the surface of the front is
specified in the following form (three-dimensional perturbations can be reduced to two-dimensional)

t = g exp {0t + iky),

where y is the coordinate directed along the front, and k is the wave number of the perturbation. On the left
side of the heat-conduction equation (1.4) one must add the term A8%T/0y® and the solution of this equation must
be sought in the form

8§ T'; = fi(x) exp (0f + iky).

Then, in the solutions (1.6), instead of £ one must have the expression & + K? (K = Ik). The boundary
conditions remain unchanged, As a result, in Eq. (1.11) instead of & we have the expression Q + K* and the
decrement of the principal most slowly decaying solution will be

Q=—&:,

which confirms that there is a certain stability reserve due to the two-dimensional nature of the perturbations,
in accordance with the physical mechanism suggested above.

If the wave propagates under conditions when focussing of the laser beam is considerable, on the convex
parts of the perturbed surface of the front the power of the light flux and consequently the heat dissipation
will be less than on the concave parts, which should lead to additional stabilization of the wave front and to more
more rapid equalization,

The authors thank G. I. Kozlov and V. I. Myshenkov for useful discussion and comments,
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HEAT EXCHANGE OF A CYLINDER WITH
LOW-FREQUENCY OSCILLATIONS

V. B. Repin UDC 536.25

It is well known that the presence of a sonic field intensifies heat-mass exchange processes [1-3], and
that this intensification is due to the presence of stationary secondary flows formed near the solid surface [1].
However, existing theoretical treatments of this question are limited to the case of high-frequency oscillations,
while the situation in which the thickness of the Stokes layer is comparable to or larger than the size of the
body is no less important, For example, such a situation is realized in heating devices operating in a high-
frequency instability regime and using atomized liquid or solid fuel. These problems are of importance in
thermoanemometry. In the present study the example of a circular cylinder will be used to study the effect
of low-frequency oscillations on local and integral characteristics of the heat exchange process. By low fre-
quency, we refer to the region where the Stokes layer thickness [0a¢ ~ (v /w)%%] is comparable to or larger than
the cylinder size.

Let a circular cylinder of radius a and infinite length be located within an infinite viscous liquid, which
at an infinite distance from the cylinder undergoes oscillations following a harmonic law with cyclical fre-
quency w, The temperatures of the cylinder surface TW and the surrounding medium Tw are considered con-
stant, and the temperature difference (TW — Tu) is assumed so small that changes in the physical properties
of the liquid and natural convection may be neglected, Also neglecting dissipative effects, we write the energy
equation in the form [3]:

ar s AP, T H o
w T e L (L
with boundary conditions
T=14fr r=0,T=0for r— oo, @)

The dimensionless quantities in Egs. (1), (2) are defined as follows:
r = (F — aYla, v = §/Ba, 1 = 10, T = (T — PIT—~ Ta),
where e =S/a; H= Sac/a; 8gp = V v/w; 8 is the amplitude of the acoustical displacement of the medium; B = Sw

is the amplitude of the velocity pulsations. The tilda superscript denotes quantities having dimensions.

We will consider the case in which € < 1 (a similar assumption was used in solving the hydrodynamic
portion of the probiem {4]). Then, using the perturbation method, we write the solution of Eq. (1) in the form
of a series

I'=T,—¢el, + 0% 3)
and similarly represent the velocity field
P o=y + ey + O, )

We recall that according to {4}, 4, is a periodic function of time with frequency w and contains no time-inde-
pendent component, while ¢, consists of two components, a stationary ;b?t and a periodic z/)?, which varies with
a cyclical frequency 2w,

Since we are interested in the effect of low-frequency oscillations on the heat exchange of the circular
cylinder, we will assume further that H = G(1).

We will consider the case where Pr = G(1), Substituting Egs. (3), @) in Eq. (1) and collecting terms with
identical powers of &€, we obtain the following equations:

Kazan'. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 67-72, Sep-
tember~-October, 1981. Original article submitted June 30, 1980.

0021-8944/81/2205-0651507.50 © 1982 Plenum Publishing Corporation 651



