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The continuous optical discharge consists of a steady discharge sustained by a focussed continuous laser 

beam with a preconduction power level. Experimental investigations of the continuous optical discharge, fol- 
lowing its discovery [I], showed that under certain conditions steady-state "burning" of the discharge does not 
occur: either the discharge ceases or there are periodic oscillations of the leading edge of the plasma at a 
frequency of the order of 10-15 Hz, which are obviously accompanied by the propagation of absorption fronts 
which follow one another from the ignition point in the opposite direction to the beam. These phenomena, which 
can be treated as the manifestation of instability of the corresponding steady-state modes of the discharge, as 
though it were a static discharge or a discharge wave propagating with constant velocity, are observed in the 
upper pressure limit at which a continuous optical discharge can exist [2]. 

In view of this and a number of other phenomena it is of interest to investigate the stability of the dif- 
ferent steady-state modes of an optical discharge. The problem of the stability of any particular mode of the 
discharge generally arises immediately after the corresponding stationary solution is constructed. In the con- 
struction of these solutions the idea of an analogy" be~%veen a burning wave - a flame front- and the discharge 

wave [3] and the stationary heating on the surface of a spherical volume of gas and the continuous optical dis- 
charge in a focussed beam [4] has been extremely fruitful, and has enabled the highly developed methods of 
the theory of combustion to be used in the physics of the discharges. It might be expected that methods of in- 
vestigating the stability of flames would also be fruitful when solving the problem of the stability of different 
types of discharges.* In particular, the methods used in the present paper go back to [5] in which the diffusion- 
thermal instability of chemical-transformation fronts is investigated. 

.4 number of qualitative effects which should affect the stability of the discharge are mentioned in [3]. In 
[4] a proof is given of the one-dimensional stability of a steady optical discharge of spherical shape. An at- 
tempt to analyze the stability of a continuous optical discharge to one-dimensional perturbations was also made 
in [6, 7], but the results obtained, in particular the conclusions regarding the existence of a limit of the stable 
continuous optical discharge at a fairly high temperature of the surrounding medium, are of doubtful validity 

due to the inconsistent use of the method of small perturbations. 

Below, we investigate the problem of the linear stability of a one-dimensional wave of an optical dis- 
charge propagating towards the laser beam. A one-dimensional model of the stationary wave of the discharge 
is assumed [3], which is applicable when there is a small change in the light flux during the time the wave 
takes to travel a distance of the order of its width and assuming that the flow of gas in the channel of the light 

beam is one-dimensional. 

We will consider the case of "intense" absorption of the electromagnetic energy flux, when the absorption 
length of the radiation is much less than the radius of the channel. If conditions are established in which the 
energy losses due to radiation and due to heat transfer through the boundary of the channel are small com- 
pared with the heat dissipation, the problem arises of the propagation of a wave of the optical discharge with- 
out loss [3]. The stationary characteristics of such a wave were obtained in [8]. We will now analyze its stabil- 

ity. 

i. We will choose a system of coordinates attached to the propagating unperturbed wave in which the gas 
moves in the positive x direction (see Fig. I). In view of the shaY'p Boltzmann dependence of the absorption 
coefficient on the temperature [3] the extent of the zone of heat dissipation in which the incident flux of electro- 
magnetic energy of power S O is completely absorbed is small compared with the width of the heating zone. We 

*These methods enable one to obtain an effective solution to the problem of the stability of high-frequency dis- 
charges under conditions of intense skin effect iV. I. Myshenkov, Zh. Eksp. Teor. Fiz., 73, No. 5, 1794 (1977)]. 
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Fig. 1 

wi l l  r e g a r d  i t  as a s u r f a c e  w h i c h  s e p a r a t e s  r e g i o n  1, in which  S == S0, f r o m  the r e g i o n  of hot  gas  2 wi th  S : 0, 
w h i e h  is c o m p l e t e l y  s c r e e n e d  by the a b s o r p t i o n  zone  (values  r e l a t i n g  to each  of t h e s e  r e g i o n s  w i l l  h e n c e f o r t h  
be deno ted  by the s u b s c r i p t s  1 and 2, r e s p e c t i v e l y ) .  

The t h e r m a l  i n s t a b i t i t y  wi l l  f i r s t  be a n a l y z e d  i g n o r i n g  the in f luence  of h y d r o d y n a m i c s  on the d i s c h a r g e  
f ron t  and a s s u m i n g  c o n s t a n t  gas  d e n s i t y ,  wh ich  c o n s i d e r a b l y  s i m p l i f i e s  the  i n v e s t i g a t i o n ,  s i n c e  in th is  e a s e  
we do not  need  to c o n s i d e r  the  p e r t u r b e d  mot ion  of  the  gas .  In the  fo l lowing  s e c t i o n  we wi l l  show that  t h e s e  
a s s u m p t i o n s  do not a l t e r  the  r e s u l t s  ob ta ined  r e g a r d i n g  the s t a b i l i t y  of the  d i s c h a r g e  wave  to o n e - d i m e n s i o n a l  
p e r t u r b a t i o n s .  

The s t a t i o n a r y  t e m p e r a t u r e  d i s t r i b u t i o n  in the  d i s c h a r g e  wave  o u t s i d e  the a b s o r p t i o n  zone 

T~(x) = T O + ( r ~ - -  To) exp(x ' l )  (! ... )Jpouocp), T~ ~ TB (1.1) 

s a t i s f i e s  the s a m e  hea t  conduc t ion  equa t ion  z'r~' = T~' (i = 1, 2,  and the p r i m e  deno te s  d i f f e r e n t i a t i o n  wi th  r e -  
s p e c t  to x) and the  bounda ry  cond i t ions  T~(-:r = To, T~(0) = T~ = TB, T2 ~ = 0. H e r e  T O is the i n i t i a l  t e m -  
p e r a t u r e  of the  g a s ,  T B is  the  t e m p e r a t u r e  in the a b s o r p t i o n  zone ,  and X and Cp a r e  the t h e r m a l  conduc t iv i t y  
and s p e c i f i c  hea t  at  c o n s t a n t  p r e s s u r e ,  wh ich  a r e  a s s u m e d  to be c o n s t a n t ,  and the s u p e r s c r i p t  z e r o  h e r e  and 
be low deno te s  s t a t i o n a r y  q u a n t i t i e s .  The s t a t i o n a r y  wave  v e l o c i t y  u 0 and T B a r e  found f r o m  the fo l lowing  r e l a -  
t ions  which  e x p r e s s  the  law of c o n s e r v a t i o n  of e n e r g y  and e n e r g y  b a l a n c e  in the  a b s o r p t i o n  zone:  

S o = ~ S ~ ( T )  dx, XT~' ~- So, (1.2) 
- c o  

where ~ is the radiant-energy absorption coefficient. 

Using the method of small perturbations, we will specify the perturbation of the surface of the absorption 
front in the form 

= e exp ~0t (1.3) 

(~ is  a c o n s t a n t ,  ~ is  the i n c r e m e n t ,  and t is  the  t ime)  and we  wi l l  s e e k  the p e r t u r b e d  t e m p e r a t u r e  f i e lds  s a t -  
i s f y i n g  the n o n s t a t i o n a r y  h e a t - c o n d u c t i o n  equa t ions  

OTi OeTi OTi (1.4) 

in the form 

Ti -- T~ (x) + 5T~ (x, t), 5T~ = ]~ (x) exp a)t. (1.5) 

Subs t i t u t i ng  (1.5) in to  the  l i n e a r i z e d  equa t ions  (1.4) and s o l v i n g  t h e s e  fo r  fi t ak ing  into accoun t  the d e c a y  
of  the p e r t u r b a t i o n s  a s  x - * - ~ o  and t h e i r  b o u n d e d n e s s  a s  x ~ + ~ ,  we ob ta in  

/~ = C~ exp (I + l / ~  + 4f~)x/2l, ]~ = C2 exp (t - -  ] / t  - -  4-~)x/2l 

( a  - -  ~)z/uo, Re Vi - :V~  > 0). (1.6) 

The perturbed solutions on the left and right of the absorption front are related to one another by the 
conditions of continuity of temperature T~) and conservation of energy flux: 

z .... 0, T0'~4- ~T 1 = 5T~, T~ (1.7) 1 ' - 1 ,~ + ( 6 T 1 ) '  = ( S T y . ) ' .  

T h e s e  b o u n d a r y  cond i t ions  can  be found by i n t e g r a t i n g  the n o n s t a t i o n a r y  h e a t - c o n d u c t i o n  equat ion  

OT #T ~ O~T 
P0cp ---37 5- p0UoCp ~ =-/~ 0.2 + ~S (1.8) 
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with the added term pS representing the heat dissipation due to absorption of the electromagnetic energy flux 
in the absorption zone, allowing its thickness to approach zero, and linearizing the relations obtained taking 
into account the fact that ~ and 5T are quantities of the first order of smallness. In deriving the second bound- 
ary condition in (1.7) allowance must be made for the fact that the source term in (1.8) is equal to -S' in view 
of the equation of light-flux absorption S' =-#S. 

In the linear approximation the change in the velocity of propagation of the stationary discharge wave, 

which can be assumed to depend only on the temperature in the absorption zone, is represented by the coeffi- 
cient 

z := (T,  - -  To)d in uo/dT~, (1.9) 

the  e x p l i c i t  e x p r e s s i o n  fo r  wh ich  is  d e t e r m i n e d  by the s p e c i f i c  f o r m  of the  u0(T B) r e l a t i o n s h i p  [for u 0 ~ exp 
{ - I / 2 k T  B) we have  z = I (T B - T 0)/2kT2B]. Then the l i n e a r i z e d  cond i t ion  fo r  to ta l  a b s o r p t i o n  of the  l igh t  f lux 
in the  wave  f ron t  ( taking into  account  the s m a l l n e s s  of 4) can  be w r i t t e n  in the  f o r m  

u 0 ata~ = _ z ~ 5T~ (0). (1.10) 

Subs t i t u t i ng  (1.3) and the so lu t i ons  (1.5) and (1.6) in to  Eqs .  (1.7) and {1.10) we  ob ta in  a s y s t e m  of t h r e e  
l i n e a r  equa t ions  fo r  e,  C1 and C2, w h i c h  has  a so lu t i on  p rov ided  

2~1]/t -~- 4{1 + z ( V t +  4tl - t) = 0. (1.11) 

It  can  be shown tha t  th is  equat ion  does  not have  u n s t a b l e  r o o t s  wi th  Ret-~ > 0, i . e . ,  the  o p t i c a l - d i s c h a r g e  
wave  is  s t a b l e  fo r  a l l  z. The r o o t  ~ = 0 of Eq. (1.11) r e p r e s e n t s  p e r t u r b a t i o n s  which  o c c u r  when the i n i t i a l  
s t a t i o n a r y  t e m p e r a t u r e  p e r t u r b a t i o n  is  d i s p l a c e d  in the x d i r e c t i o n  wi thout  chang ing  i t s  shape .  The e x i s t e n c e  
of such  p e r t u r b a t i o n s  fo l lows  f r o m  the  i n v a r i a n c e  of the h e a t - c o n d u c t i o n  equa t ion  e m p l o y e d  wi th  r e s p e c t  to a 
d i s p l a c e m e n t  a long  the x ax i s .  In [9], wh ich  is  devo ted  to an a n a l y s i s  of the o n e - d i m e n s i o n a l  s t a b i l i t y  of a 
l a m i n a r  f l a m e ,  i t  was  shown tha t  the p r e s e n c e  of such  a " t r a n s l a t i o n a l "  p e r t u r b a t i o n  does  not i n d i c a t e  tha t  
the stationary solution is unstable. 

The above investigation is broadly similar to the analysis of the stability of the front of an exothermal 
chemical reaction propagating in a condensed medium [I0]. The difference, due to the specific features of the 
system considered, lies solely in the second boundary condition in (1.7). 

2. We will carry out a more accurate analysis of the stability taking into account the dependence of the 
gas density on temperature. The gas is assumed to be dynamically incompressible, since the rate of propaga- 
tion of the wave is much less than the velocity of sound (the Mach number is much less than unity). The pres- 
sure drop in the wave front is small (of the order of the square of the Mach number), and the pressure can be 
assumed to be constant. The gas density is then found from the known temperature distribution (I.I) using the 
equat ion  of s t a t e  

pT == const ~ poTo, i .e .  po == poTo/T o, po _ poTo/T B (2.1) 

(the s u p e r s c r i p t  z e r o  deno te s  q u a n t i t i e s  at  x = - ~).  

The s t a t i o n a r y  v e l o c i t y  of the gas  is  found f r o m  the equa t ion  of con t inu i ty  

=~ t t  0 p0u0 const = p0u0, u~ : :  p0uo/p ~ u~ = P0 o/P2 = uoTB/To. (2.2) 

When ana lyz ing  the s t a b i l i t y  one m u s t  b e a r  in mind  the  fac t  tha t  the  t e m p e r a t u r e  p e r t u r b a t i o n ,  a c c o r d i n g  
to the  equat ion  of s t a t e  (2.1), l e ads  to a p e r t u r b a t i o n  of  the d e n s i t y  5p i =-(P0T0 / Ti~ = P i -  P[). Hence ,  
the  l i n e a r i z e d  h e a t - c o n d u c t i o n  and con t inu i ty  equa t ions  t ake  the f o r m  

o 8 5 T  i ~ dST~ dY ~ O~ST~ 
p~cp --97-- T p0u0cp ~ + cp ~ 7 -  5 (p~@ = ~. - -  8x  2 ' 

PoTo OaTi 0 (2.3) 
§ 5(Ou)~ = 0 (5 (pu)~  - p u  - -  poUo). 

T o :  0 ~  

Subs t i t u t i ng  (1.5) and 5(pu) i = pouo~i(x)expwt  we ob ta in  

T~ gl.]~ + l]'i ~- IT? '~  = l~]:: ; (2.4) 
r? 

T o 
TO~ P - h  § l ~  = 0. (2.5)  
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We wi l l  ob ta in  the  s o l u t i o n  of th is  s y s t e m  of equa t ions  in the r e g i o n  x < ~ (i = 1). M u l t i p l y i n g  Eq. (2.5) by 

T~ and adding  i t  to (2.4) we  ob ta in  the  i n t e g r a l  of the s y s t e m  

= O s l -  IOIT7 

(the c o n s t a n t  of i n t e g r a t i o n  is  z e r o  s i n c e  fl = 0, f'l = 0, r = 0 when x = - ~ ) .  

Subs t i t u t i ng  qh f r o m  Eq. (2.6) in to  Eq. (2.5) we ob ta in  a s e c o n d - o r d e r  l i n e a r  d i f f e r e n t i a l  equa t ion  in fl 

w i th  v a r i a b l e  c o e f f i c i e n t s  

0" O# 
, t T1 i IT1 - -  7 T  O 

" ~ = '; (2.7) f i - - a l ( x )  i l + a s ( x ) i i  = 0  a i = - ~ - +  T' 0 ,, a~ -l~ TO 

w h i c h  m u s t  s a t i s f y  the  b o u n d a r y  cond i t i on  fl(-~o) = 0. 

I t  is  not p o s s i b l e  to  i n t e g r a t e  Eq.  (2.7). H o w e v e r ,  we can  u s e  the  f ac t  t ha t  to a n a l y z e  the s t a b i l i t y  i t  is  
su f f i c i en t  to c o n s t r u c t  a s o l u t i o n  of Eq. (2.7) w i th  the cond i t ion  f l ( - ~ )  = 0 in the n e i g h b o r h o o d  of the  point  x = 0 

wi th  an a c c u r a c y  to O(x). 

We wi l l  p r o c e e d  as fo l lows .  We ob ta in  the  g e n e r a l  s o l u t i o n  (2.7) a s s u m i n g  a I and a 2 to be cons t an t :  

I1 = Cigi ~- Ciy2, y~ = exp ~ (x), 
(2.8) 1 

~ l , 2 = T a l  + V + a ~ - - a 2 ,  R e ] , / ' 4 a : - - a 2 • 0  

(C1 and C1 a r e  c o n s t a n t s ) .  

ff we now t ake  into accoun t  the  fac t  tha t  the  c o e f f i c i e n t s  a I and a 2 depend  on x ,  Eq. (2.8) b e c o m e s  an a p -  
p r o x i m a t e  so lu t i on  w h i c h  c o i n c i d e s  wi th  the t r ue  so lu t i on  as  x - - -  ~ ,  s i n c e  Eq.  (2.8) i s  the  s o l u t i o n  of  Eq.  (2.7) 
w i th  the c o e f f i c i e n t s  a ~ ( - ~ )  and a2(-  ~).  In v iew of  the  b o u n d a r y  cond i t ion  f l ( - ~ )  = 0 we  m u s t  put C~ = 0. 

In the  r e g i o n  x - - - ~  the  func t ion  fi = c lyl wi th  ill(x) = fl~(o) d e s c r i b e s  the so lu t i on  of the i n i t i a l  equa t ion  
(2.7) v e r y  a c c u r a t e l y  [the e r r o r  wh ich  o c c u r s  on s u b s t i t u t i n g  the  a p p r o x i m a t e  s o l u t i o n  Yl into E q .  (2.7) does  not 
exceed  a quan t i t y  of the  o r d e r  fi'l(0) ~ ~ << 1 of  the v a l u e  of the  m a i n  t e r m ]  and,  in the  r e q u i r e d  a p p r o x i -  
m a t i on ,  has  the  f o r m  

'I '~ ' ]  f~ = = G ( t + ~ ( 0 ) x L  ~ ( 0 ) - - -  V i -  2r---2• t + 4 - ~ a  . (2.9/ 

At o t h e r  points  the a p p r o x i m a t e  s o l u t i o n  (2.8) may  d i f f e r  c o n s i d e r a b l y  f r o m  the t r u e  so lu t ion ,  but fo r  ou r  
p u r p o s e s  i t  is only  i m p o r t a n t  that  i t  should  be va l id  fo r  s m a l l  and l a r g e  v a l u e s  of Ix I. 

In the  r e g i o n  x > ~ the  s o l u t i o n  fo r  f2 can  i m m e d i a t e l y  be found f r o m  Eq.  (2.4) s i n c e  T o' = 0. Tak ing  into 
accoun t  the  fac t  tha t  the  p e r t u r b a t i o n s  a r e  bounded at  x = + ~ i t  has  the f o r m  

To 0- 
Subs t i t u t i ng  the  s o l u t i o n s  (2.9), (2.10) and (1.3) into the b o u n d a r y  cond i t ions  on the d i s c h a r g e  f r o n t  (1.7) 

and,  t ak ing  into accoun t  the  t e m p e r a t u r e  d e p e n d e n c e  of the d e n s i t y ,  the  a l t e r e d  cond i t i on  fo r  to ta l  a b s o r p t i o n  
of the  l ight  f lux in the  wave  f ron t  

ot - To t + z 5T~(O)~ 

we ob ta in  the  fo l lowing  cond i t ion  fo r  the  s y s t e m  of t h r e e  l i n e a r  equa t ions  in C1, C2 and e to have  a so lu t ion :  

' -~ 4 7--~ _ ~ + 4 - ~ 0  " / (2.11) 

This  equa t ion  does  not  have  u n s t a b l e  r o o t s  w i th  R e ~  > 0 (as men t ioned  above  the r o o t  ~ = 0 is  not  un-  
s t a b l e ) ,  i . e . ,  the c o n c l u s i o n  in Sec.  1 r e g a r d i n g  the s t a b i l i t y  of the  d i s c h a r g e  wave  ob ta ined  when a n a l y z i n g  
the  p e r t u r b a t i o n s  of  only the  t e m p e r a t u r e  f i e ld  is  c o n f i r m e d .  The s t a b i l i t y  is  not d i s t u r b e d  if  a l l o w a n c e  is  
m a d e  f o r  the  f ac t  that  the  gas  expands  due to i t  be ing  hea t ed  by the hea t  d i s s i p a t e d  in the a b s o r p t i o n  zone .  
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From Eqs. (2.6) and (2.5) for i = 2 we can obtain the perturbations of the mass flow of gas in regions 1 
and 2, which are connected to one another by the condition of continuity of the mass flow through the wave front. 
The corresponding equation contains the constants C; and C 2 and one new constant equal to the perturbation of 
the gas velocity behind the wave front when x = ~o. It is not used to obtain the characteristic equation (2.11) and 
is therefore not given here. 

3. One-dimensional perturbations of the discharge-wave front are the most dangerous from the point of 
view of the occurrence of instability. In fact, when the surface of the absorption front is distorted, correspond- 
ing to spatial (non-one-dimensional) perturbations, the parts of the front that are convex in the direction of 
propagation of the wave dissipate heat more than the plane parts of the front. Hence, the velocity of propaga- 
tion of the discharge front, which depend strongly on the temperature, are less stationary on the convex parts. 
On the concave parts the gas temperature on the other hand, is greater than on the convex parts, since the 

gas is heated additionally from the neighboring convex parts. The velocity of propagation of the concave parts 
is correspondingly greater than the stationary part. On the whole, as a result of the increase in the velocity 
on the concave parts and the reduction in the velocity on the convex parts the discharge front becomes equal- 
ized. Hence, when the front is distorted, additional stabilization of the discharge wave occurs. A mathematical 
investigation of the stability of the discharge front with respect to spatial perturbations can be carried out with- 
in the framework of the model investigated in Sec. i. In this case perturbation of the surface of the front is 
specified in the following form (three-dimensional perturbations can be reduced to two-dimensional) 

= e exp (o)t -~- iky), 

w h e r e  y is  the  c o o r d i n a t e  d i r e c t e d  a long the f ron t ,  and k i s  the  wave  n u m b e r  of the  p e r t u r b a t i o n .  On the l e f t  
s i de  of the  h e a t - c o n d u c t i o n  equa t ion  (1.4) one m u s t  add the t e r m  k 0 2 T / 0 y  2 and the so lu t i on  of th is  equa t ion  m u s t  
be sough t  in the  f o r m  

5 :r~ = J~(x) exp ((0t + ~ky). 

Then ,  in the  so lu t i ons  (1.6), i n s t e a d  of  ~ one m u s t  have  the e x p r e s s i o n  ~] + K 2 (K = lk). The b o u n d a r y  
cond i t ions  r e m a i n  unchanged .  As a r e s u l t ,  in Eq. (1.11) i n s t e a d  of ~ we have  the  e x p r e s s i o n  ~ + K 2 and the 
decrement of the principal most slowly decaying solution will be 

which confirms that there is a certain stability reserve due to the two-dimensional nature of the perturbations, 
in accordance with the physical mechanism suggested above. 

if the wave propagates under conditions when focussing of the laser beam is considerable, on the convex 
parts of the perturbed surface of the front the power of the light flux and consequently the heat dissipation 
will be less than on the concave parts, which should lead to additional stabilization of the wave front and to more 

more rapid equalization. 

The authors thank G. I. Kozlov and V. I. Myshenkov for useful discussion and comments. 
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H E A T  E X C H A N G E  OF A C Y L I N D E R  W I T H  

L O W - F R E Q U E N C Y  O S C I L L A T I O N S  

V. t3. R e p i n  UDC 536.25 

It is well known that the presence of a sonic field intensifies hea t -mass  exchange processes  [1-3], and 
that tbAs intensification is due to the presence of s tat ionary seeondary flows formed near  the solid surface  [1]. 
However,  existing theoret ical  t reatments  of this question are limited to the ease of high-frequency oscil lat ions,  
while the situation in which the thickness of the Stokes layer  is comparable  to or  l a rger  than the size of the 
body is no less important.  For  example, such a situation is real ized in heating devices operating in a high- 
frequency instability regime and using atomized liquid or solid fuel. These problems are  of importance in 
the rmoanemomet ry .  In the present  study the example of a c i rcu la r  cylinder will be used to study the effect 
of low-frequency oscillations on local and integral  charac te r i s t i cs  of the heat exchange process .  By low f r e -  
quency, we re fer  to the region where the Stokes layer  thickness [6ac ~ (u/c0) ~ is comparable  to or  l a rger  than 
the cyl inder  size.  

Let a c i rcu la r  cylinder of radius a and infinite length be located within an infinite viscous liquid, which 
at an infinite distance f rom the cyl inder  undergoes oscillations following a harmonic law with cycl ical  f r e -  
quency co. The tempera tures  of the cylinder surface ~7 w and the surrounding medium Too are  considered con- 
slant,  and the t empera tu re  difference (~7 w - T~) is assumed so smal l  that changes in the physical proper t ies  
of the liquid and natural convection may be neglected. Also neglecting dissipative effects,  we wri te  the energy 
equation in the form [3]: 

Or ~ 0 (% T) tt ~ 
0-7- + ~-~- r o (r, 0) = - g 7  V~T (1) 

with boundary conditions 

T ----- I for r = 0, T = 0 for r -+  co. (2) 

The dimensionless quantities in Eqs. (1), (2) are  defined as follows: 

,~ : ( 7  - ~ ) / a , ,  = ~ / B a ,  �9 = 7,0, r = ( ~  - ~ ) / ( ~ -  r 2 ) ,  

where ~ = S / a ;  H = 6 a e / a ;  Sac = ~ ;  S is the amplitude of the acoustical  displacement  of the medium; B = SoJ 
is the amplitude of the velocity pulsations. The tilda superscr ip t  denotes quantities having dimensions.  

We will consider  the case in which ~ << 1 (a s imi lar  assumption was used in solving the hydrodynamic 
portion of the problem [4]). Then, using the perturbation method, we write the solution of Eq. (1) in the form 
of a ser ies  

T = To -,'- ~rl  + 0(~9 (3) 

and s imi lar ly  represen t  the velocity field 

(4) 

We recall that according to [4], }0 is a periodic function of time with frequency co and contains no time-inde- 

pendent component, while ~b I consists of two components, a stationary ~st and a periodic ~b p, which varies with 
a cyclical frequency 2co. 

Since we are interested in the effect of low-frequency oscillations on the heat exchange of the circular 
cylinder, we will assume further that H = O(i). 

We will consider the case where Pr = O(1). Substituting Eqs. (3), (4) in Eq. (i) and collecting terms with 
identical powers of e, we obtain the following equations: 

Kazan'. Translated from ZhurnM Prikladnoi Mekhaniki i Tekhnicheskoi Fizfld, No. 5, pp. 67-72, Sep- 
tember-October, 1981. Original article submitted June 30, 1980. 
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